- #1
karush
Gold Member
MHB
- 3,269
- 5
Consider the following limit where L'H Rule was correctly applied twice
Determine the functions f'(x), g'(x), f(x), and g(x) needed to result in the limit given.
\begin{align*}\displaystyle
\lim_{x \to 0}\frac{f(x)}{g(x)}
\overset{\text{L'H}}=&
\lim_{x \to 0}\frac{f'(x)}{g'(x)}\\
\overset{\text{L'H}}=&
\lim_{x \to 0}\frac{f''(x)}{g''(x)}\\
\overset{\text{}}=&
\lim_{x \to 0}\frac{e^x + \cos{x}}{12x-6}\\
\overset{\text{}}=&
\lim_{x \to 0}\frac{e^0 + \cos{0}}{12(0)-6}
=\frac{1+1}{-6}=\frac{1}{3}\\
\end{align*}
$ \textit{using}$
$$\displaystyle \int \cos{x} \, dx = \sin{x}+c
,\quad
\displaystyle \int \sin{x} \, dx=-\cos{x}+c
,\quad
\displaystyle \int e^x \, dx = e^x+c
,\quad
\displaystyle \int x^n \, dx =\frac{x^{n+1}}{n+1}+c$$
$\textit{then}$
\begin{align*}\displaystyle
\frac{f'(x)}{g'(x)}
&=\frac{e^x-\sin{x}}{6x^2-6x}\\
\frac{f(x)}{g(x)}
&=\frac{e^x + \cos{x}}{2x^3-3x^2}
\end{align*}ok not sure if there are typos in this
but was not sure how deal with the constant c with anti-direvatives
Determine the functions f'(x), g'(x), f(x), and g(x) needed to result in the limit given.
\begin{align*}\displaystyle
\lim_{x \to 0}\frac{f(x)}{g(x)}
\overset{\text{L'H}}=&
\lim_{x \to 0}\frac{f'(x)}{g'(x)}\\
\overset{\text{L'H}}=&
\lim_{x \to 0}\frac{f''(x)}{g''(x)}\\
\overset{\text{}}=&
\lim_{x \to 0}\frac{e^x + \cos{x}}{12x-6}\\
\overset{\text{}}=&
\lim_{x \to 0}\frac{e^0 + \cos{0}}{12(0)-6}
=\frac{1+1}{-6}=\frac{1}{3}\\
\end{align*}
$ \textit{using}$
$$\displaystyle \int \cos{x} \, dx = \sin{x}+c
,\quad
\displaystyle \int \sin{x} \, dx=-\cos{x}+c
,\quad
\displaystyle \int e^x \, dx = e^x+c
,\quad
\displaystyle \int x^n \, dx =\frac{x^{n+1}}{n+1}+c$$
$\textit{then}$
\begin{align*}\displaystyle
\frac{f'(x)}{g'(x)}
&=\frac{e^x-\sin{x}}{6x^2-6x}\\
\frac{f(x)}{g(x)}
&=\frac{e^x + \cos{x}}{2x^3-3x^2}
\end{align*}ok not sure if there are typos in this
but was not sure how deal with the constant c with anti-direvatives
Last edited: