- #1
mcastillo356
Gold Member
- 592
- 316
- TL;DR Summary
- T'm in front of a statement about limits of a power, and the conditions are not comprehensive by me
Hi, PF
This is the quote:
"If ##m## is an integer and ##n## is a positive integer, then
6. Limit of a power:
## \displaystyle\lim_{x \to{a}}{\left[f(x)\right]^{m/n}} ## whenever ##L>0## if ##n## is even, and ##L\neq{0}## if ##m<0##"
What do I understand?
-whenever ##L>0## if ##n## is even: ##m## could be a negative integer, so I could write ##L^{-m/n}=\dfrac{1}{L^{m/n}}##. Right?
-and ##L\neq{0}## if ##m<0##: so I could write: ##-L^{-m/n}=-\dfrac{1}{L^{m/n}}##
I'm I right?I'm not native, excuse the language mistakes
This is the quote:
"If ##m## is an integer and ##n## is a positive integer, then
6. Limit of a power:
## \displaystyle\lim_{x \to{a}}{\left[f(x)\right]^{m/n}} ## whenever ##L>0## if ##n## is even, and ##L\neq{0}## if ##m<0##"
What do I understand?
-whenever ##L>0## if ##n## is even: ##m## could be a negative integer, so I could write ##L^{-m/n}=\dfrac{1}{L^{m/n}}##. Right?
-and ##L\neq{0}## if ##m<0##: so I could write: ##-L^{-m/n}=-\dfrac{1}{L^{m/n}}##
I'm I right?I'm not native, excuse the language mistakes