- #1
ozkan12
- 149
- 0
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)