Limit of Complex Sums: Find $$\lim_{n\to \infty}$$

In summary, the limit of a complex sum is the value that a sequence of complex numbers approaches as the number of terms in the sum approaches infinity. To find the limit, various techniques such as the squeeze theorem, direct evaluation, or the use of known limit properties can be used. Some common properties of limits of complex sums include linearity and the squeeze theorem. The limit of a complex sum can be infinite, which can occur when the terms in the sum are increasing without bound or when the sum involves complex numbers with large magnitudes. Limits of complex sums have various applications in real-world situations, such as modeling population growth and analyzing numerical methods in scientific and engineering applications.
  • #1
Euge
Gold Member
MHB
POTW Director
2,073
241
Let ##c## be a complex number with ##|c| \neq 1##. Find $$\lim_{n\to \infty} \frac{1}{n}\sum_{\ell = 1}^n \frac{\sin(e^{2\pi i \ell/n})}{1-ce^{-2\pi i \ell/n}}$$
 
  • Like
Likes topsquark
Physics news on Phys.org
  • #2
We have that:

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi} \int_0^{2 \pi} \dfrac{ \sin \left( e^{i \theta} \right) }{ 1 - c e^{- i \theta} } d \theta
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{1 - c z^{-1}} \frac{dz}{z}
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\end{align*}

Since ##\sin z## is an entire function (having no singularities at any point in the complex plane), the function

\begin{align*}
f(z) = \dfrac{\sin z}{z - c}
\end{align*}

only has a (simple) pole at ##z_0 = c##.

Therefore, if ##|c| < 1## then

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\nonumber \\
& = \sin c .
\end{align*}

If ##|c| > 1## then

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\nonumber \\
& = 0 .
\end{align*}

Proof that ##\sin z## is an entire function: Note

\begin{align*}
\sin (x+iy) & = \dfrac{e^{i x - y} - e^{-i x + y}}{2i}
\nonumber \\
& = \dfrac{e^{i x} - e^{-i x}}{2i} \dfrac{e^y + e^{- y}}{2} + i \dfrac{e^{i x} + e^{-i x}}{2} \dfrac{e^y - e^{- y}}{2}
\nonumber \\
& = \sin x \cosh y + i \cos x \sinh y
\nonumber \\
& =u (x,y) + i v (x,y)
\end{align*}

Note

\begin{align*}
u_x & = \cos x \cosh y ,
\nonumber \\
u_y & = \sin x \sinh y
\nonumber \\
v_x & = - \sin x \sinh y ,
\nonumber \\
v_y & = \cos x \cosh y .
\end{align*}

We read off that

\begin{align*}
u_x = v_y , \qquad v_x=- u_y
\end{align*}

for all ##x,y \in \mathbb{R}##, hence the CR conditions are satisfied for ##x,y \in \mathbb{R}##, and so the function ##\sin z## is entire.
 
Last edited:
  • Like
Likes Office_Shredder, Euge and topsquark

Similar threads

  • Math POTW for University Students
Replies
3
Views
776
  • Math POTW for Graduate Students
Replies
1
Views
2K
Replies
2
Views
2K
Replies
0
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
637
Replies
6
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
454
  • Calculus and Beyond Homework Help
Replies
17
Views
1K
  • Calculus and Beyond Homework Help
Replies
8
Views
887
Back
Top