- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to calculate the limit $$\lim_{x\rightarrow \infty}x^{100}\left [\frac{1}{x}\right ]$$
When $x\rightarrow +\infty$ it holds that $0<\frac{1}{x}<1$, or not? (Wondering)
If yes, it holds that $\left [\frac{1}{x}\right ]=0$ or not? Then $x^{100}\left [\frac{1}{x}\right ]=0$, and therefore the limit is $0$. But what happens if $x\rightarrow -\infty$ ? (Wondering)
I want to calculate the limit $$\lim_{x\rightarrow \infty}x^{100}\left [\frac{1}{x}\right ]$$
When $x\rightarrow +\infty$ it holds that $0<\frac{1}{x}<1$, or not? (Wondering)
If yes, it holds that $\left [\frac{1}{x}\right ]=0$ or not? Then $x^{100}\left [\frac{1}{x}\right ]=0$, and therefore the limit is $0$. But what happens if $x\rightarrow -\infty$ ? (Wondering)