- #1
tmt1
- 234
- 0
I have this sequence:
$${a}_{n} = \ln \left(\frac{12n + 2}{-9 + 4n}\right)$$
I need to find the limit of this sequence. How can I go about this? Do I need to apply L'Hopitals rule? I'm unsure how to simplify this expression. If I use the rule $\ln(\frac{a}{b}) = \ln a - \ln b$ I get $\infty - \infty$, which I don't think is useful.
$${a}_{n} = \ln \left(\frac{12n + 2}{-9 + 4n}\right)$$
I need to find the limit of this sequence. How can I go about this? Do I need to apply L'Hopitals rule? I'm unsure how to simplify this expression. If I use the rule $\ln(\frac{a}{b}) = \ln a - \ln b$ I get $\infty - \infty$, which I don't think is useful.
Last edited by a moderator: