- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the following exercise:
Let $m_1\neq m_2$ be constants and $y$ the solution of the initial value problem $$y''-(m_1+m_2)y'+m_1m_2y=0\ \ \ \ y(0)=0 \ \ y'(0)=1$$
We consider $y$ as a function not only of $x$ but also of $m_1$ and $m_2$.
With constant $m_2$ find (if exists) the limit of $y$ when $m_1\rightarrow m_2$.
What do we conclude? I have done the following:
$$y''-(m_1+m_2)y'+m_1m_2y=0$$
The characteristic polynomial is $$k^2-(m_1+m_2)k+m_1m_2=0$$
We get the following: $$\Delta=m_1^2+2m_1m_2+m_2^2-4m_1m_2=(m_1-m_2)^2$$
Therefore $$k_{1,2}=\frac{m_1+m_2\pm (m_1-m_2)}{2}$$
So, we get $$k_1=\frac{m_1+m_2+m_1-m_2}{2}=m_1, \ \ k_2=\frac{m_1+m_2-m_1+m_2}{2}=m_2$$
The solution of the ivp is $$y(x)=c_1e^{m_1x}+c_2e^{m_2x}$$
$$y(0)=0 \Rightarrow c_1+c_2=0 \Rightarrow c_1=-c_2$$
$$y'(x)=c_1m_1e^{m_1x}+c_2m_2e^{m_2x} \ : \ y'(0)=1 \Rightarrow c_1m_1+m_2c_2=1 \Rightarrow c_1=\frac{1-c_2m_2}{m_1}$$
The solution of the ivp is therefore, $$y(x)=\frac{1-c_2m_2}{m_1}e^{m_1x}+c_2e^{m_2x}$$
We have that \begin{align*}\lim_{m_1\rightarrow m_2}y(x, m_1, m_2)&=\frac{1-c_2m_2}{m_2}e^{m_2x}+\frac{c_2m_2}{m_2}e^{m_2x} \\ & =\frac{1}{m_2}e^{m_2x}-\frac{c_2m_2}{m_2}e^{m_2x}+\frac{c_2m_2}{m_2}e^{m_2x} \\ & = \frac{e^{m_2x}}{m_2}\end{align*}
Is everything correct? (Wondering)
What could we conclude? (Wondering)
I am looking at the following exercise:
Let $m_1\neq m_2$ be constants and $y$ the solution of the initial value problem $$y''-(m_1+m_2)y'+m_1m_2y=0\ \ \ \ y(0)=0 \ \ y'(0)=1$$
We consider $y$ as a function not only of $x$ but also of $m_1$ and $m_2$.
With constant $m_2$ find (if exists) the limit of $y$ when $m_1\rightarrow m_2$.
What do we conclude? I have done the following:
$$y''-(m_1+m_2)y'+m_1m_2y=0$$
The characteristic polynomial is $$k^2-(m_1+m_2)k+m_1m_2=0$$
We get the following: $$\Delta=m_1^2+2m_1m_2+m_2^2-4m_1m_2=(m_1-m_2)^2$$
Therefore $$k_{1,2}=\frac{m_1+m_2\pm (m_1-m_2)}{2}$$
So, we get $$k_1=\frac{m_1+m_2+m_1-m_2}{2}=m_1, \ \ k_2=\frac{m_1+m_2-m_1+m_2}{2}=m_2$$
The solution of the ivp is $$y(x)=c_1e^{m_1x}+c_2e^{m_2x}$$
$$y(0)=0 \Rightarrow c_1+c_2=0 \Rightarrow c_1=-c_2$$
$$y'(x)=c_1m_1e^{m_1x}+c_2m_2e^{m_2x} \ : \ y'(0)=1 \Rightarrow c_1m_1+m_2c_2=1 \Rightarrow c_1=\frac{1-c_2m_2}{m_1}$$
The solution of the ivp is therefore, $$y(x)=\frac{1-c_2m_2}{m_1}e^{m_1x}+c_2e^{m_2x}$$
We have that \begin{align*}\lim_{m_1\rightarrow m_2}y(x, m_1, m_2)&=\frac{1-c_2m_2}{m_2}e^{m_2x}+\frac{c_2m_2}{m_2}e^{m_2x} \\ & =\frac{1}{m_2}e^{m_2x}-\frac{c_2m_2}{m_2}e^{m_2x}+\frac{c_2m_2}{m_2}e^{m_2x} \\ & = \frac{e^{m_2x}}{m_2}\end{align*}
Is everything correct? (Wondering)
What could we conclude? (Wondering)
Last edited by a moderator: