- #1
Ragnarok7
- 50
- 0
I have the following problem:
\(\displaystyle \lim_{x\rightarrow 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}\)
If I multiply by the conjugate of the denominator I get
\(\displaystyle \lim_{x\rightarrow 4}\frac{\sqrt{(2x+1)(x-2)}+\sqrt{2(2x+1)}-3\sqrt{x-2}-3\sqrt{2}}{x-4}\)
but am not sure where to go from here. Any suggestions? Thank you!
\(\displaystyle \lim_{x\rightarrow 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}\)
If I multiply by the conjugate of the denominator I get
\(\displaystyle \lim_{x\rightarrow 4}\frac{\sqrt{(2x+1)(x-2)}+\sqrt{2(2x+1)}-3\sqrt{x-2}-3\sqrt{2}}{x-4}\)
but am not sure where to go from here. Any suggestions? Thank you!