- #1
Eus
- 94
- 0
Hi Ho!
Mmmm... I have a problem with this one:
[itex]\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}}[/itex]
Using a computer graphics tool, I found that the result should be -1 by looking at the generated graph.
But if I do it by hands, I find 1 as follows:
[itex]\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}} = \lim_{x\rightarrow-\infty} \frac{x \frac{1}{x}}{\sqrt{z^2+x^2} \frac{1}{x}}[/itex]
[itex]= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{\frac{z^2+x^2}{x^2}}}[/itex]
[itex]= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{1+(\frac{z}{x})^2}}[/itex]
[itex]= \frac{1}{\sqrt{1+(\frac{z}{-\infty})^2}}[/itex]
[itex]= \frac{1}{\sqrt{1+0}}[/itex]
[itex]= \frac{1}{1}[/itex]
[itex]= 1[/itex]
Would you please correct my mistake?
Thank you very much!
Mmmm... I have a problem with this one:
[itex]\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}}[/itex]
Using a computer graphics tool, I found that the result should be -1 by looking at the generated graph.
But if I do it by hands, I find 1 as follows:
[itex]\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}} = \lim_{x\rightarrow-\infty} \frac{x \frac{1}{x}}{\sqrt{z^2+x^2} \frac{1}{x}}[/itex]
[itex]= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{\frac{z^2+x^2}{x^2}}}[/itex]
[itex]= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{1+(\frac{z}{x})^2}}[/itex]
[itex]= \frac{1}{\sqrt{1+(\frac{z}{-\infty})^2}}[/itex]
[itex]= \frac{1}{\sqrt{1+0}}[/itex]
[itex]= \frac{1}{1}[/itex]
[itex]= 1[/itex]
Would you please correct my mistake?
Thank you very much!
Last edited: