- #1
Yann
- 48
- 0
Homework Statement
a) Prove that;
[tex]\lim_{(x,y)\rightarrow(0,0)} \frac{x^2y}{x^2+y^2} = 0[/tex]
b) Prove that if [tex]\lim_{(x,y)\rightarrow(0,0)} f(x,y) = L_1[/tex] and [tex]\lim_{(x,y)\rightarrow(0,0)} f(x,y) = L_2[/tex], then [tex]L_1=L_2[/tex]
c) Using the statement proven in 5b, prove that
[tex]\lim_{(x,y)\rightarrow(0,0)} \frac{xy}{x^2+y^2}[/tex]
Does NOT exist.
2. The attempt at a solution
a)
[tex]f(0,y) = \frac{0}{y^2} = 0[/tex]
[tex]f(x,0) = \frac{0}{x^2} = 0[/tex]
From those 2 directions, the limit is the same, so;
[tex]\lim_{(x,y)\rightarrow(0,0)} \frac{x^2y}{x^2+y^2} = 0[/tex]
b)
I have no idea how to do that, it seems to evident !
c)
Does NOT exist ? But...
[tex]f(0,y) = \frac{0}{y^2} = 0[/tex]
[tex]f(x,0) = \frac{0}{x^2} = 0[/tex]
It's exactly the same thing as in a), the limit DOES exist and it is;
[tex]\lim_{(x,y)\rightarrow(0,0)} \frac{xy}{x^2+y^2} = 0[/tex]