- #1
dwaonng
- 2
- 0
Suppose you have one limit
[tex]
lim_{x\rightarrow \ 0}(cos(x)/x) = \infty
[/tex]
and a second limit
[tex]
lim_{x\rightarrow \ \infty}(x) = \infty
[/tex]
What is the first limit subtracted by the second? Is it simply indeterminate because its inf - inf?
One friend suggested I assume x=cos(y)/y for the second limit then change the second limit to look as follows:
[tex]
lim_{x\rightarrow \ \infty}(x) =? lim_{y\rightarrow \ 0}(cos(y)/y)
[/tex]
Then can I say:
[tex]lim_{x\rightarrow \ 0}(cos(x)/x) - lim_{y\rightarrow \ 0}(cos(y)/y) =? 0 [/tex] ?
[tex]
lim_{x\rightarrow \ 0}(cos(x)/x) = \infty
[/tex]
and a second limit
[tex]
lim_{x\rightarrow \ \infty}(x) = \infty
[/tex]
What is the first limit subtracted by the second? Is it simply indeterminate because its inf - inf?
One friend suggested I assume x=cos(y)/y for the second limit then change the second limit to look as follows:
[tex]
lim_{x\rightarrow \ \infty}(x) =? lim_{y\rightarrow \ 0}(cos(y)/y)
[/tex]
Then can I say:
[tex]lim_{x\rightarrow \ 0}(cos(x)/x) - lim_{y\rightarrow \ 0}(cos(y)/y) =? 0 [/tex] ?