- #1
PFuser1232
- 479
- 20
This is actually a physics problem, but since my question is really about the math involved, I decided to post it in the calculus subforum.
I'm supposed to get from the term:
$$\lim_{\Delta t → 0} |\vec{v}_r (t + \Delta t)| \frac{\sin \Delta \theta}{\Delta t}$$
To:
$$v_r (t) \frac{d\theta}{dt}$$
##\theta## is a function of ##t## (so ##\Delta \theta## approaches zero as ##\Delta t## approaches zero), and ##v_r## is the scalar component (not the magnitude) of the vector ##\vec{v}_r##, in a particular direction.
Computing the limit as ##\Delta t## approaches zero:
$$\lim_{\Delta t → 0} |\vec{v}_r (t + \Delta t)| \frac{\sin \Delta \theta}{\Delta t} = |\vec{v}_r (t)| \frac{d\theta}{dt} = |v_r (t)| \frac{d\theta}{dt}$$
How do I get rid of those absolute value bars?
I'm supposed to get from the term:
$$\lim_{\Delta t → 0} |\vec{v}_r (t + \Delta t)| \frac{\sin \Delta \theta}{\Delta t}$$
To:
$$v_r (t) \frac{d\theta}{dt}$$
##\theta## is a function of ##t## (so ##\Delta \theta## approaches zero as ##\Delta t## approaches zero), and ##v_r## is the scalar component (not the magnitude) of the vector ##\vec{v}_r##, in a particular direction.
Computing the limit as ##\Delta t## approaches zero:
$$\lim_{\Delta t → 0} |\vec{v}_r (t + \Delta t)| \frac{\sin \Delta \theta}{\Delta t} = |\vec{v}_r (t)| \frac{d\theta}{dt} = |v_r (t)| \frac{d\theta}{dt}$$
How do I get rid of those absolute value bars?