- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading Bruce P. Palka's book: An Introduction to Complex Function Theory ...
I am focused on Chapter 2: The Rudiments of Plane Topology ...
I need help with some aspects of a worked example in Palka's remarks in Section 2.2 Limits of Functions ...
Palka's remarks in Section 2.2 which include the example read as follows:View attachment 7366
In the above text from Palka Section 2.2 we read the following:" ... ... We need only observe that for \(\displaystyle z \neq 0 \)
\(\displaystyle \lvert ( z + 1 + z \text{ Log } z) -1 \lvert = \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \)
\(\displaystyle \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert \) ... ...
... ... ... "
My questions relate to the above quoted equations/inequalities ... ...Question 1How does Palka get \(\displaystyle \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert\)?Well ... my take ... ... Following Palka's definition of \(\displaystyle \text{ Log } z = \text{ ln } \lvert z \lvert + i \text{ Arg } z
\)
we get ...
\(\displaystyle \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ ln } \lvert z \lvert + i z \text{ Arg } z \lvert \)
BUT ...
\(\displaystyle \text{ln } \lvert z \lvert = \text{Log } \lvert z \lvert\) since \(\displaystyle \text{Arg } \lvert z \lvert = 0\) ... ... is that correct?
Question 2
How did Palka get
\(\displaystyle \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert\) ... ...
Well ... my take ... only up to a point .. then ?
Using the extended triangle inequality \(\displaystyle \lvert z_1 + z_2 + z_3 \lvert \le \lvert z_1 \lvert + \lvert z_2 \lvert + \lvert z_3 \lvert\) we get ...
\(\displaystyle \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert z \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert = \lvert z \lvert + \lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert\) ... ... (*)
But how do we proceed from here ...?
Particular worries are as follows:
(1) In (*) above after using the equation \(\displaystyle \lvert z w \lvert = \lvert z \lvert \lvert w \lvert \) I get the term \(\displaystyle \lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert\) ... but Palka gets \(\displaystyle \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert\) ... how does Palka get this expression in (*) ... what explains the discrepancy between my term and Palka's ... ?
(2) How do I deal with the term \(\displaystyle \lvert i z \text{Arg } z \lvert\) in order to get \(\displaystyle \lvert z \lvert \lvert \text{Arg } z \lvert\) on the right hand side of the inequality as Palka does ... ? In other words how do we demonstrate that \(\displaystyle \lvert i z \text{Arg } z \lvert \le \lvert z \lvert \lvert \text{Arg } z \lvert\) ... ?Help will be much appreciated ... ...Peter=======================================================================================
I believe it would be helpful for readers of the above post to have access to Palka's definition and introductory discussion of logarithms of complex numbers ... so I am providing the same ... as follows ... https://www.physicsforums.com/attachments/7367
https://www.physicsforums.com/attachments/7368
I am focused on Chapter 2: The Rudiments of Plane Topology ...
I need help with some aspects of a worked example in Palka's remarks in Section 2.2 Limits of Functions ...
Palka's remarks in Section 2.2 which include the example read as follows:View attachment 7366
In the above text from Palka Section 2.2 we read the following:" ... ... We need only observe that for \(\displaystyle z \neq 0 \)
\(\displaystyle \lvert ( z + 1 + z \text{ Log } z) -1 \lvert = \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \)
\(\displaystyle \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert \) ... ...
... ... ... "
My questions relate to the above quoted equations/inequalities ... ...Question 1How does Palka get \(\displaystyle \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert\)?Well ... my take ... ... Following Palka's definition of \(\displaystyle \text{ Log } z = \text{ ln } \lvert z \lvert + i \text{ Arg } z
\)
we get ...
\(\displaystyle \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ ln } \lvert z \lvert + i z \text{ Arg } z \lvert \)
BUT ...
\(\displaystyle \text{ln } \lvert z \lvert = \text{Log } \lvert z \lvert\) since \(\displaystyle \text{Arg } \lvert z \lvert = 0\) ... ... is that correct?
Question 2
How did Palka get
\(\displaystyle \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert\) ... ...
Well ... my take ... only up to a point .. then ?
Using the extended triangle inequality \(\displaystyle \lvert z_1 + z_2 + z_3 \lvert \le \lvert z_1 \lvert + \lvert z_2 \lvert + \lvert z_3 \lvert\) we get ...
\(\displaystyle \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert z \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert = \lvert z \lvert + \lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert\) ... ... (*)
But how do we proceed from here ...?
Particular worries are as follows:
(1) In (*) above after using the equation \(\displaystyle \lvert z w \lvert = \lvert z \lvert \lvert w \lvert \) I get the term \(\displaystyle \lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert\) ... but Palka gets \(\displaystyle \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert\) ... how does Palka get this expression in (*) ... what explains the discrepancy between my term and Palka's ... ?
(2) How do I deal with the term \(\displaystyle \lvert i z \text{Arg } z \lvert\) in order to get \(\displaystyle \lvert z \lvert \lvert \text{Arg } z \lvert\) on the right hand side of the inequality as Palka does ... ? In other words how do we demonstrate that \(\displaystyle \lvert i z \text{Arg } z \lvert \le \lvert z \lvert \lvert \text{Arg } z \lvert\) ... ?Help will be much appreciated ... ...Peter=======================================================================================
I believe it would be helpful for readers of the above post to have access to Palka's definition and introductory discussion of logarithms of complex numbers ... so I am providing the same ... as follows ... https://www.physicsforums.com/attachments/7367
https://www.physicsforums.com/attachments/7368
Last edited: