- #1
Kate2010
- 146
- 0
Homework Statement
Assume:
1) f(x) [tex]\rightarrow[/tex] yo as x [tex]\rightarrow[/tex] x0
2) g(y)[tex]\rightarrow[/tex] l as y [tex]\rightarrow[/tex] y0
3) g(y0) = l
Prove that g(f(x)) [tex]\rightarrow[/tex] l as x [tex]\rightarrow[/tex] x0
Homework Equations
Definition of function tending to limit - E is a subset of R, f:E->R, f tends to l as x tends to p if for all e>0 there exists a d>0 such that |f(x) - l | < e for all x in E such that 0 < |x-p|< d.
Theorem: f: E [tex]\rightarrow[/tex] R where E [tex]\subseteq[/tex] R, p is a limit point of E and l [tex]\in[/tex] R. The following are equivalent:
a) f(x) [tex]\rightarrow[/tex] l as x [tex]\rightarrow[/tex] p
b) for every sequence {pn} in E such that pn [tex]\neq[/tex] p and lim[tex]_{n\rightarrow\infty}[/tex] pn = p we have that f(pn) [tex]\rightarrow[/tex] l as n[tex]\rightarrow[/tex] [tex]\infty[/tex]
The Attempt at a Solution
I thought I could use the above theorem with (1) to say that every sequence {xn} such that xn[tex]\neq[/tex] x0 and lim[tex]_{n\rightarrow\infty}[/tex] xn = x0, we have that f(xn) [tex]\rightarrow[/tex] y0 as n [tex]\rightarrow[/tex] [tex]\infty[/tex]
Similarly from (2) every sequence {yn} such that yn[tex]\neq[/tex] y0 and lim[tex]_{n\rightarrow\infty}[/tex] yn = y0, we have that g(yn) [tex]\rightarrow[/tex] l as n [tex]\rightarrow[/tex] [tex]\infty[/tex]
So, can I let yn = f(x) ( or maybe f(xn)?
Would this help show that g(f(x)) [tex]\rightarrow[/tex] l? I haven't used (3) or really shown this happens as x [tex]\rightarrow[/tex] x0.