- #1
Jhenrique
- 685
- 4
Knowing that the limits of integration of a any function, for example:
[tex]\int_{-\infty}^{+\infty}\delta (x)dx=1[/tex]
I know that's correct call your primitive through the limit superior as a variable, so
[tex]H(x)=\int_{-\infty}^{x}\delta (x)dx[/tex]
But, and if I want to describe your primitive through the limit inferior as a variable? Will be so:
[tex]H(x)=\int_{-x}^{+\infty}\delta (x)dx[/tex]
or:
[tex]H(x)=\int_{+x}^{+\infty}\delta (x)dx[/tex]
or other?
[tex]\int_{-\infty}^{+\infty}\delta (x)dx=1[/tex]
I know that's correct call your primitive through the limit superior as a variable, so
[tex]H(x)=\int_{-\infty}^{x}\delta (x)dx[/tex]
But, and if I want to describe your primitive through the limit inferior as a variable? Will be so:
[tex]H(x)=\int_{-x}^{+\infty}\delta (x)dx[/tex]
or:
[tex]H(x)=\int_{+x}^{+\infty}\delta (x)dx[/tex]
or other?