- #1
BDV
- 16
- 0
Hello,
I have seen (in H Cartan's differential calculus) a proof that if F is a Banch space, L(E,F) where E is some vector space, is also a Banach space. One of the main points of the proof is based on the behaviour of a function being "proper" (continuous) on a ball of arbitrary radius "n" and by such being able to extend the property to the entire space.
I was wondering when/how does this type of argument fail?
I have seen (in H Cartan's differential calculus) a proof that if F is a Banch space, L(E,F) where E is some vector space, is also a Banach space. One of the main points of the proof is based on the behaviour of a function being "proper" (continuous) on a ball of arbitrary radius "n" and by such being able to extend the property to the entire space.
I was wondering when/how does this type of argument fail?