- #1
chartery
- 40
- 4
From paper 'A brief introduction to Kerr spacetime' ( https://arxiv.org/pdf/0706.0622 )
setting m->0 in the line element in Kerr coordinates gives, equation 7 :
$$ \text{d}s_0^{2} = -\left( \text{d}u + a\sin^{2}\theta \text{d}\phi \right)^{2}+2\left( \text{d}u + a\sin^{2}\theta \text{d}\phi \right)\left( \text{d}r + a\sin^{2}\theta \text{d}\phi \right)+\left( r^{2} +a^2 \cos^{2}\theta\right)\left( \text{d}\theta^{2} + \sin^{2}\theta \text{d}\phi \right) $$
At the singularity ## \left( r=0\text{, } \theta=\frac{\pi}{2}\right) ## the author gets: ## ~~~~\text{d}s_0^{2}|_{singularity}= -\text{d}u^{2}+a^{2}\text{d}\phi^{2} ~~~~##, equation 19.
But when I do the substitution I get additional cross terms ##~~~\text{d}u\text{d}r~~## and ##~~a\text{d}r\text{d}\phi~~~##.
These must obviously be zero, but I cannot see why. Must ##\text{d}r## vanish if ##r## is zero/constant ?
setting m->0 in the line element in Kerr coordinates gives, equation 7 :
$$ \text{d}s_0^{2} = -\left( \text{d}u + a\sin^{2}\theta \text{d}\phi \right)^{2}+2\left( \text{d}u + a\sin^{2}\theta \text{d}\phi \right)\left( \text{d}r + a\sin^{2}\theta \text{d}\phi \right)+\left( r^{2} +a^2 \cos^{2}\theta\right)\left( \text{d}\theta^{2} + \sin^{2}\theta \text{d}\phi \right) $$
At the singularity ## \left( r=0\text{, } \theta=\frac{\pi}{2}\right) ## the author gets: ## ~~~~\text{d}s_0^{2}|_{singularity}= -\text{d}u^{2}+a^{2}\text{d}\phi^{2} ~~~~##, equation 19.
But when I do the substitution I get additional cross terms ##~~~\text{d}u\text{d}r~~## and ##~~a\text{d}r\text{d}\phi~~~##.
These must obviously be zero, but I cannot see why. Must ##\text{d}r## vanish if ##r## is zero/constant ?