- #1
Whitishcube
- 83
- 0
Homework Statement
Let L be the line tangent to the curve [itex]\vec{G}(t)=10\text{Cos}(t)\mathbf{i} + 10\text{Sin}(t)\mathbf{j} + 16t \mathbf{k}[/itex] at the point [itex](\frac{10}{\sqrt{2}}, \frac {10}{\sqrt{2}}, 4 \pi)[/itex]
Find the point at which L intersects the x-y plane.
Homework Equations
The Attempt at a Solution
So taking the derivative of G gives
[tex]\vec{G}'(t)= -10\sin (t)\mathbf{i} + 10\cos (t)\mathbf{j} +16\mathbf{k}[/tex]
So L should be defined as follows (with [itex]t_0=\frac{\pi }{4}[/itex]):
[tex]L=\vec{G}\left(t_0\right)+t\left(\vec{G}'\left(t_0\right)\right)[/tex]
[tex]L=\left\{\frac{10}{\sqrt{2}},\frac{10}{\sqrt{2}},4\pi \right\}+t\left\{\frac{-10}{\sqrt{2}},\frac{10}{\sqrt{2}},16\right\}[/tex]
[tex]L=\frac{10}{\sqrt{2}}(1-t)\mathbf{i} + \frac{10}{\sqrt{2}}(1+t)\mathbf{j}\text{ }+(16t+4\pi )\mathbf{k}[/tex]
So, solving for where the x and y components are both 0:
[tex]\frac{10}{\sqrt{2}}(1-t) =0[/tex]
[tex] \frac{10}{\sqrt{2}}(1+t)=0[/tex]
So the line L passes through the x-y plane at the point [itex](1,-1)[/itex]
does everything I've done here look correct? I'm not sure if I'm going about this the easiest (or correct) way. Thanks for the input!
Last edited: