- #1
twizzy
- 4
- 0
Homework Statement
Solve the equation [tex]u_{x}+2xy^{2}u_{y}=0[/tex] with [tex]u(x,0)=\phi(x)[/tex]
Homework Equations
Implicit function theorem
[tex]\frac{dy}{dx}=-\frac{\partial u/\partial x}{\partial u/\partial y}[/tex]
The Attempt at a Solution
[tex]-\frac{u_x}{u_y}=\frac{dy}{dx}=2xy^2[/tex]
Separating variables
[tex]\frac{dy}{y^2}=2xdx[/tex]
[tex]\frac{-1}{y}=x^2+c[/tex]
[tex]C=x^2+\frac{1}{y}[/tex]
So [tex]u(x,y)=f(x^2+\frac{1}{y})[/tex]
The boundary condition is given as evaluating at [tex]y=0[/tex] which doesn't seem to make sense. Any thoughts? Thanks!
Last edited: