- #1
gruba
- 206
- 1
Homework Statement
Find the span of [itex]U=\{2,\cos x,\sin x:x\in\mathbb{R}\}[/itex] ([itex]U[/itex] is the subset of a space of real functions) and [itex]V=\{(a,b,b,...,b),(b,a,b,...,b),...,(b,b,b,...,a): a,b\in \mathbb{R},V\subset \mathbb{R^n},n\in\mathbb{N}\}[/itex]
Homework Equations
-Vector space span
-Linear independence
-Rank
The Attempt at a Solution
Objects in [itex]U[/itex] :[itex]2,\cos x,\sin x[/itex] are linearly independent, so they span [itex]\mathbb{R^3}[/itex].
Let ,[itex]n=3\Rightarrow [V]= \begin{bmatrix}
a & b & b \\
b & a & b \\
b & b & a \\
\end{bmatrix}[/itex]
[itex]rref[V]=\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}\Rightarrow [/itex] vectors in [itex]V[/itex] span [itex]\mathbb{R^3}[/itex], if [itex]a,b\neq 0[/itex].
But because [itex]V\subset\mathbb{R^n}\Rightarrow [/itex] vectors span [itex]\mathbb{R^{n-1}}[/itex].
Is this correct?