- #1
joe_cool2
- 24
- 0
Homework Statement
Let R2 have the Euclidean inner product and use the Gram-Schmidt process to transform the basis {u1,u2} into an orthonormal basis.
u1 = (1,-3)
u2 = (2,2)
Homework Equations
Gram-Schmidt process:
[tex]
\\v_1 = u_1
\\v_2= u_2 -
\frac{\left ( \left \langle u_2, v_1\right \rangle \right )}{\left \|
v_1
\right \| ^ 2}v_1
[/tex]
The Attempt at a Solution
We'll go ahead and find the norm of v first. Then we'll evaluate the second Gram-Schmidt equation.
[tex]
\\\left \| v_1 \right \| = \sqrt{10} \\\\
\left \| v_1 \right \|v_1 = u_1 = (1,-3)
\\\\\left \| v_2 \right \|v_2= \begin{bmatrix}
2\\2
\end{bmatrix} -
\frac{\left ( \left \langle \begin{bmatrix}
2\\2
\end{bmatrix} , \begin{bmatrix}
\frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}
\end{bmatrix} \right \rangle \right )}{\left \| \begin{bmatrix}
\frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}
\end{bmatrix} \right \| ^ 2}
\begin{bmatrix}
\frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}
\end{bmatrix}\\\\\left \| v_2 \right \|v_2= \begin{bmatrix}
2\\2
\end{bmatrix} - \frac{\left ( \frac{-4}{\sqrt{10}} \right )}{1} \begin{bmatrix} \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}} \end{bmatrix}
\\\\
\begin{bmatrix}
2\\2
\end{bmatrix}
- \begin{bmatrix}
\frac{-4}{10}\\\\\frac{12}{10}
\end{bmatrix}
=
\begin{bmatrix}
\frac{24}{10}\\\\\frac{8}{10}
\end{bmatrix}
=
\begin{bmatrix}
\frac{12}{5}\\\\\frac{4}{5}
\end{bmatrix}
[/tex]
I've not been able to get another answer for this step. Even checked in Matlab.
Now, we'll normalize the vector like the problem wants us to:
[tex]
\\\left \| v_2 \right \| = \sqrt{8}
\\
v_2 = \begin{bmatrix}
\frac{\frac{12}{5}}{\sqrt{8}}\\
\frac{\frac{4}{5}}{\sqrt{8}}
\end{bmatrix}
=
\begin{bmatrix}
\frac{\frac{12}{5}}{\sqrt{8}}\\
\frac{\frac{4}{5}}{\sqrt{8}}
\end{bmatrix}
=
\begin{bmatrix}
\frac{12}{10\sqrt{2}}\\\\
\frac{4}{10\sqrt{2}}
\end{bmatrix}
=
\begin{bmatrix}
\frac{6}{5\sqrt{2}}\\\\
\frac{2}{5\sqrt{2}}
\end{bmatrix}
=
\begin{bmatrix}
\frac{6\sqrt{2}}{10}\\\\
\frac{2\sqrt{2}}{10}
\end{bmatrix}
=
\begin{bmatrix}
\frac{3\sqrt{2}}{5}\\\\
\frac{\sqrt{2}}{5}
\end{bmatrix}
[/tex]
This is an odd problem, so I know that the solution should be [itex] v_2 = (\frac{3}{\sqrt{10}} , \frac{1}{\sqrt{10}}) [/itex]. There must be something wrong when I'm finding [itex]||v_2||v_2[/itex] . Is there anything fundamentally wrong with my process?
Last edited: