- #1
andyk23
- 26
- 0
Let f : P3 → M2x2 be given by f(a + bx + cx^2 + dx^3) =
(a + d 0)
(0 b − c)
1. Determine the nullspace and nullity of f and specify a basis for the nullspace.
-I came up with N(h)= {a+bx+cx^2+dx^3/ a+d=0 & b-c=0}=
={( 0 b), a,d are elements of R}
( c 0)
2. Determine the rangespace and rank of f and specify a basis for the rangespace.
-R(h)= ( a+d 0) are elements of matrix 2x2/ a,b are elements of R}
( 0 b-c)
3. Is f one-to-one? Is f onto? Why or why not?
-f is not one to one because the vectors share partners in the m2x2. f is onto because it spans from the same dimensions.
If someone could show some guidance it would be appreciated. I don't think I have the range space and null space correct.
(a + d 0)
(0 b − c)
1. Determine the nullspace and nullity of f and specify a basis for the nullspace.
-I came up with N(h)= {a+bx+cx^2+dx^3/ a+d=0 & b-c=0}=
={( 0 b), a,d are elements of R}
( c 0)
2. Determine the rangespace and rank of f and specify a basis for the rangespace.
-R(h)= ( a+d 0) are elements of matrix 2x2/ a,b are elements of R}
( 0 b-c)
3. Is f one-to-one? Is f onto? Why or why not?
-f is not one to one because the vectors share partners in the m2x2. f is onto because it spans from the same dimensions.
If someone could show some guidance it would be appreciated. I don't think I have the range space and null space correct.