- #1
Tazz01
- 9
- 0
Homework Statement
T : R[itex]^{3}[/itex] -> R[itex]^{3}[/itex] is a linear transformation. We need to prove the equivalence of the three below statements.
i) R[itex]^{3}[/itex] = ker(T) [itex]\oplus[/itex] im(T);
ii) ker(T) = ker(T[itex]^{2}[/itex]);
iii) im(T) = im(T[itex]^{2}[/itex]).
Homework Equations
R[itex]^{3}[/itex] = ker(T) [itex]\oplus[/itex] im(T), if for all v [itex]\in[/itex] R[itex]^{3}[/itex] there exists x [itex]\in[/itex] ker(T) and y [itex]\in[/itex] im(T) such that v = x + y, and ker(T) [itex]\bigcap[/itex] im(T) = {0}
ker(T) = {x[itex]\in[/itex]R[itex]^{3}[/itex] : T(x)=0}
im(T) = { w[itex]\in[/itex]R[itex]^{3}[/itex] : w=f(x), x[itex]\in[/itex]R[itex]^{3}[/itex]}
The Attempt at a Solution
I really have no idea how to show these statements are equivalent. Can someone also clarify the linear mapping T[itex]^{2}[/itex]?
Thanks.