- #1
Mumba
- 27
- 0
First i calculated the eigenvalues: I got
[tex](i-\lambda)(-i-\lambda)+1[/tex], so
[tex]\lambda_{1,2}=+-\sqrt{2}i[/tex]
Is it correct to go on on like this:
[tex]\lambda_{1}a+b=\sqrt{\lambda_{1}}[/tex]
[tex]\lambda_{2}a+b=\sqrt{\lambda_{2}}[/tex]
After calculating a and b, we plug it into f(x) = ax+b -->
[tex]f(A^{*}A)=a(A^{*}A)+bI[/tex]
Then
[tex]f(A^{*}A)=\sqrt{A^{*}A}=|A|[/tex] and
[tex]U=A|A|^{-1}[/tex]
This way i find U, and i think |A|=P
So i have the polar decompostion A = UP?!
Is the way correct?
Thx
Mumba
Edit: A* - Transpose
Last edited: