- #1
VinnyCee
- 489
- 0
Homework Statement
http://img216.imageshack.us/img216/302/problem8310en9.jpg
By applying Kirchoff's laws to the circuit above, we obtain the following equations:
[tex]i_1\,-\,i_2\,-\,i_3\,=\,0[/tex]
[tex]i_1\,-\,i_2\,-\,i_3\,=\,0[/tex]
[tex]R_2\,i_2\,-\,R_3\,i_3\,=\,0[/tex]
[tex]R_1\,i_1\,-\,R_2\,i_2\,=\,E[/tex]
[tex]R_1\,i_1\,-\,R_3\,i_3\,=\,E[/tex]
Obtain the solution set of equations by Gauss elimination. If there is no solution, or if there is a non-unique solution, explain that result in physical terms.
[tex]R_1\,=\,R_2\,=\,R_3\,\equiv\,R[/tex]
Homework Equations
Linear algebra, matrices, etc.
The Attempt at a Solution
First, I put the four non-identical equations into a matrix.
[tex]\left(\begin{array}{cccc}1&-1&-1&0\\0&R&-R&0\\R&R&0&E\\R&0&R&E\end{array}\right)[/tex]
Now I reduce it down to R.R.E.F. using elementary row operations. (Note that one of the equations is redundant)
[tex]\left(\begin{array}{cccc}1&0&0&\frac{2E}{3R}\\0&1&0&\frac{E}{3R}\\0&0&1&\frac{E}{3R}\end{array}\right)[/tex]
So then, [itex]i_1\,=\,\frac{2E}{3R}[/itex] and [itex]i_2\,=\,i_3\,=\,\frac{E}{3R}[/itex]?
Last edited by a moderator: