- #1
evilpostingmong
- 339
- 0
Homework Statement
Show that A has c=0 as an eigenvalue if and only if A is non invertible.
Homework Equations
The Attempt at a Solution
Let A be a square matrix (mxm). Then Av=(a1,1v1+...+am,1vm)+...+(a1,mv1+...+am,mvm).
Since an identity matrix is square, and Icv is an mxm matrix,
we have (a1,1v1+...+a1,mv1)+..+(am,1vm+...+am,mvm)
For (a1,1+...+a1,m)v1+...+(am,1+...+am,m)vm=Icv,
(ak,1+...+ak,m) must=c. But if the matrix is mxn, n>m
then we have (ak,1+...+ak,m+...+ak,n) which is>(ak,1+...+ak,m).
Unless all rows after m are 0 (making the matrix back to mxm)
all (ak,1+...+ak,n) must be zero along with c so that
Av=0=Icv=I(0)v=0.