- #1
braindead101
- 162
- 0
Let A and B be similar matrices. Prove that the geometric multiplicities of the eigenvalues of A and B are the same.
Some help I have gotten so far but still don't know how to proceed from there:
To prove that the geometric multiplicities of the eigenvalues of A and B are the same, we can show that, if B = P^-1 AP , then every eigenvector of B is of the form P^-1 v for some eigenvector v of A.
And i also know that for A and B to be similar matrices, these 5 properties must hold.
1. det A = det B
2. A and B have the same rank
3. A and B have the same characteristic polynomial
4. A and B have the same eigenvalues
5. A is invertible iff B is invertible
any help would be greatly appreciated
Some help I have gotten so far but still don't know how to proceed from there:
To prove that the geometric multiplicities of the eigenvalues of A and B are the same, we can show that, if B = P^-1 AP , then every eigenvector of B is of the form P^-1 v for some eigenvector v of A.
And i also know that for A and B to be similar matrices, these 5 properties must hold.
1. det A = det B
2. A and B have the same rank
3. A and B have the same characteristic polynomial
4. A and B have the same eigenvalues
5. A is invertible iff B is invertible
any help would be greatly appreciated