- #1
akima
- 3
- 0
Let V be a 9 dimensional vector space and let U and W
be five dimensional subspaces of V with the bases Bu
and Bw respectively,
(a) show that if Bu intersect Bw is empty then
Bu union Bw is linearly dependen
(b)use part (a) to prove U intersect W is not
equal to the 0 vector
now i have already done part (a), now i have already
done part (a). can you please help me..
for part a.. this is what i have briefly...
we know Bu intersect Bw has nothing in common.
Since Bu and Bw is a basis we know that it is linearly independent.
Therefore Let bu be a linearly independent
subset of a vector space V and let Bw be a
vector in V that is not in Bu, then Bu union Bw
is linearly dependent iff Bw is in the span of Bu... (by a theorem)
by definition of a basis we know, span ( Bu) = v
therefore, the question now is if Bw is in V
which is true ( definition of a basis)... therefore
Bu union Bw is linearly dependent if Bu intersect Bw is nothing...
be five dimensional subspaces of V with the bases Bu
and Bw respectively,
(a) show that if Bu intersect Bw is empty then
Bu union Bw is linearly dependen
(b)use part (a) to prove U intersect W is not
equal to the 0 vector
now i have already done part (a), now i have already
done part (a). can you please help me..
for part a.. this is what i have briefly...
we know Bu intersect Bw has nothing in common.
Since Bu and Bw is a basis we know that it is linearly independent.
Therefore Let bu be a linearly independent
subset of a vector space V and let Bw be a
vector in V that is not in Bu, then Bu union Bw
is linearly dependent iff Bw is in the span of Bu... (by a theorem)
by definition of a basis we know, span ( Bu) = v
therefore, the question now is if Bw is in V
which is true ( definition of a basis)... therefore
Bu union Bw is linearly dependent if Bu intersect Bw is nothing...