- #1
braindead101
- 162
- 0
Let T1 be the C-vector space with basis B = (1, cosx, sinx). Define J: T1->T1 by (Jf)(x) = integ(0->pi) f(x-t)dt. Show that J is diagonalizable and find an eigenbasis.
J(1) = integ(0->pi) 1 dt
J(1) = t | (0->pi)
J(1) = pi
J(cos(x)) = integ(0->pi) cos(x-t) dt
J(cos(x)) = - sin (x-t) | (0->pi)
J(cos(x)) = - sin (x-pi) + sin(x)
J(cos(x)) = - (sin(x) cos(pi) - cos(x) sin (pi)) + sin(x)
J(cos(x)) = - (-sin(x)) + sin(x)
J(cos(x)) = 2sin(x)
J(sin(x)) = integ(0->pi) sin(x-t) dt
J(sin(x)) = cos (x-t) | (0->pi)
J(sin(x)) = cos (x-pi) - cos (x)
J(sin(x)) = cos(x) cos (pi) + sin(x) sin(pi) - cos (x)
J(sin(x)) = -2cos(x)
[J]T1 = pi 0 0
0 0 -2
0 2 0
v = lambda
So, det [J-vI] = (pi-v)(v^2 +4)
So, pi - v = 0 or v^2 +4 = 0
v = pi, v = 2i v = -2i
how do i go about looking for eigenbasis?
J(1) = integ(0->pi) 1 dt
J(1) = t | (0->pi)
J(1) = pi
J(cos(x)) = integ(0->pi) cos(x-t) dt
J(cos(x)) = - sin (x-t) | (0->pi)
J(cos(x)) = - sin (x-pi) + sin(x)
J(cos(x)) = - (sin(x) cos(pi) - cos(x) sin (pi)) + sin(x)
J(cos(x)) = - (-sin(x)) + sin(x)
J(cos(x)) = 2sin(x)
J(sin(x)) = integ(0->pi) sin(x-t) dt
J(sin(x)) = cos (x-t) | (0->pi)
J(sin(x)) = cos (x-pi) - cos (x)
J(sin(x)) = cos(x) cos (pi) + sin(x) sin(pi) - cos (x)
J(sin(x)) = -2cos(x)
[J]T1 = pi 0 0
0 0 -2
0 2 0
v = lambda
So, det [J-vI] = (pi-v)(v^2 +4)
So, pi - v = 0 or v^2 +4 = 0
v = pi, v = 2i v = -2i
how do i go about looking for eigenbasis?
Last edited: