- #1
mattmns
- 1,128
- 6
Hello, just wondering if my proof is sufficient.
Here is the question from my book:
Show that the following sets of elements in R2 form subspaces:
(a) The set of all (x,y) such that x = y.
-------
So if we call this set W, then we must show the following:
(i) [tex]0 \in W[/tex]
(ii) if [tex] v,w \in W[/tex], then [tex]v+w \in W[/tex]
(iii) if [tex]c \in R[/tex] and [tex]v \in W[/tex] then [tex]cv \in W[/tex]
Pf:
(i) [tex]0 \in W[/tex] because we can take x = 0 = y
(ii) if [tex]v,w \in W[/tex] then [tex](v,v) \in W[/tex] and [tex](w,w) \in W[/tex] and [tex](v,v) + (w,w) = (v + w, v + w) \in W[/tex] so [tex]v+w \in W[/tex] because v + w = x = y = v + w
(iii) if [tex]c \in R[/tex] and [tex]v \in W[/tex], then [tex](v,v) \in W[/tex] and [tex]c(v,v) = (cv,cv) \in W[/tex] so [tex]cv \in W[/tex] because cv = x = y = cv
Therefore W is a subspace.
Does that look just fine? Thanks.
Here is the question from my book:
Show that the following sets of elements in R2 form subspaces:
(a) The set of all (x,y) such that x = y.
-------
So if we call this set W, then we must show the following:
(i) [tex]0 \in W[/tex]
(ii) if [tex] v,w \in W[/tex], then [tex]v+w \in W[/tex]
(iii) if [tex]c \in R[/tex] and [tex]v \in W[/tex] then [tex]cv \in W[/tex]
Pf:
(i) [tex]0 \in W[/tex] because we can take x = 0 = y
(ii) if [tex]v,w \in W[/tex] then [tex](v,v) \in W[/tex] and [tex](w,w) \in W[/tex] and [tex](v,v) + (w,w) = (v + w, v + w) \in W[/tex] so [tex]v+w \in W[/tex] because v + w = x = y = v + w
(iii) if [tex]c \in R[/tex] and [tex]v \in W[/tex], then [tex](v,v) \in W[/tex] and [tex]c(v,v) = (cv,cv) \in W[/tex] so [tex]cv \in W[/tex] because cv = x = y = cv
Therefore W is a subspace.
Does that look just fine? Thanks.
Last edited: