- #1
karush
Gold Member
MHB
- 3,269
- 5
A belt contects two pulleys with radii $\displaystyle5\text { in}$ and $3\text { in}$
the $\displaystyle5\text { in}$ pulley is rotating at $\displaystyle\frac{1000\text{ rev}}{\text{min}}$
What is the linear $\displaystyle\text{v}$ in $\displaystyle\frac{\text{ft}}{\text{sec}}$ of the belt?
$\displaystyle \text{v}=
\frac{1000\text{rev}}{\text{min}}
\cdot\frac{\text{min}}{60\text{ sec}}
\cdot\frac{10\pi \text{ in}}{\text{rev}}
\cdot\frac{\text{ ft}}{12 \text{in}}
=\frac{125\pi\text{ ft}}{9\text{sec}}
=43.63\frac{\text{ft}}{\text{sec}}
$
How many revolutions per min is the $\text{3 in}$ pulley making?
so
$\displaystyle \omega_{3in}
=\frac{5}{3}
\cdot\frac{1000\text{rev}}{\text{min}}
\approx 1667\frac{\text{rev}}{\text{min}}$
no ans in bk on this so hope ans here is perhaps it.
the $\displaystyle5\text { in}$ pulley is rotating at $\displaystyle\frac{1000\text{ rev}}{\text{min}}$
What is the linear $\displaystyle\text{v}$ in $\displaystyle\frac{\text{ft}}{\text{sec}}$ of the belt?
$\displaystyle \text{v}=
\frac{1000\text{rev}}{\text{min}}
\cdot\frac{\text{min}}{60\text{ sec}}
\cdot\frac{10\pi \text{ in}}{\text{rev}}
\cdot\frac{\text{ ft}}{12 \text{in}}
=\frac{125\pi\text{ ft}}{9\text{sec}}
=43.63\frac{\text{ft}}{\text{sec}}
$
How many revolutions per min is the $\text{3 in}$ pulley making?
so
$\displaystyle \omega_{3in}
=\frac{5}{3}
\cdot\frac{1000\text{rev}}{\text{min}}
\approx 1667\frac{\text{rev}}{\text{min}}$
no ans in bk on this so hope ans here is perhaps it.