- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to check if there is a solution of a linear differential equation of first order in the ring of exponential sums $\text{EXP}(\mathbb{C})$. I have done the following: The general linear differential equation of first order is $$ax'(z)+bx(z)=y(z) \tag{*}$$
where $x,y \in \text{EXP}(\mathbb{C})$.
We have that $$y(z)=\sum_{i=1}^N \alpha_i e^{\mu_i z}, \ \ x(z)=\sum_{i=1}^N \beta_i e^{k_i z} \ \ \text{ so } \ \ x'(z)=\sum_{i=1}^N \beta_i k_i e^{k_i z}$$
$$(*) \Rightarrow a\sum_{i=1}^N \beta_i k_i e^{k_i z}+b\sum_{i=1}^N \beta_i e^{k_i z}= \sum_{i=1}^N \alpha_i e^{\mu_i z} \Rightarrow \sum_{i=1}^N \left [a\beta_i k_i +b\beta_i \right ]e^{k_i z}=\sum_{i=1}^N \alpha_i e^{\mu_i z}$$ For $k_i=\mu_i$ we have the following:
$$\sum_{i=1}^N \left [\beta_i (a\mu_i +b) \right ]e^{\mu_i z}=\sum_{i=1}^N \alpha_i e^{\mu_i z} \Rightarrow \sum_{i=1}^N \left [(a \mu_i +b)\beta_i -\alpha_i\right ]e^{\mu_i z}=0$$ 1. If for at least one $i$ with $\alpha_i\ne0$ we have $a\mu_i+b=0$, there is no solution.
2. If for at least one $i$ with $\alpha_i = 0$ we have $a\mu_i+b \neq 0$, we have that $\beta_i=0$.
3. If for all $i$ it holds that $\alpha_i = 0 \land a\mu_i+b = 0$, then thee are infinitely many solutions.
4. If for all $i$ it holds that $\alpha_i\ne0 \land a\mu_i+b\ne0$, then there is exactly one solution, with $\beta_i=\frac{\alpha_i}{a\mu_i+b}$.
Is everything correct? Have I forgotten a case? (Wondering)
I want to check if there is a solution of a linear differential equation of first order in the ring of exponential sums $\text{EXP}(\mathbb{C})$. I have done the following: The general linear differential equation of first order is $$ax'(z)+bx(z)=y(z) \tag{*}$$
where $x,y \in \text{EXP}(\mathbb{C})$.
We have that $$y(z)=\sum_{i=1}^N \alpha_i e^{\mu_i z}, \ \ x(z)=\sum_{i=1}^N \beta_i e^{k_i z} \ \ \text{ so } \ \ x'(z)=\sum_{i=1}^N \beta_i k_i e^{k_i z}$$
$$(*) \Rightarrow a\sum_{i=1}^N \beta_i k_i e^{k_i z}+b\sum_{i=1}^N \beta_i e^{k_i z}= \sum_{i=1}^N \alpha_i e^{\mu_i z} \Rightarrow \sum_{i=1}^N \left [a\beta_i k_i +b\beta_i \right ]e^{k_i z}=\sum_{i=1}^N \alpha_i e^{\mu_i z}$$ For $k_i=\mu_i$ we have the following:
$$\sum_{i=1}^N \left [\beta_i (a\mu_i +b) \right ]e^{\mu_i z}=\sum_{i=1}^N \alpha_i e^{\mu_i z} \Rightarrow \sum_{i=1}^N \left [(a \mu_i +b)\beta_i -\alpha_i\right ]e^{\mu_i z}=0$$ 1. If for at least one $i$ with $\alpha_i\ne0$ we have $a\mu_i+b=0$, there is no solution.
2. If for at least one $i$ with $\alpha_i = 0$ we have $a\mu_i+b \neq 0$, we have that $\beta_i=0$.
3. If for all $i$ it holds that $\alpha_i = 0 \land a\mu_i+b = 0$, then thee are infinitely many solutions.
4. If for all $i$ it holds that $\alpha_i\ne0 \land a\mu_i+b\ne0$, then there is exactly one solution, with $\beta_i=\frac{\alpha_i}{a\mu_i+b}$.
Is everything correct? Have I forgotten a case? (Wondering)