- #1
find_the_fun
- 148
- 0
Solve the linear equation:
\(\displaystyle x\frac{dy}{dx}-y=x^2sinx\)
rewrite \(\displaystyle \frac{dy}{dx}-\frac{y}{x}=\frac{x^2sinx}{x}=xsinx\)
\(\displaystyle P(x)=\frac{-1}{x}\)
So \(\displaystyle e^ { \int \frac{-1}{x} dx }=-1\)<=this is where I went wrong
\(\displaystyle \frac{d}{dx}[-y]=-xsinx\)
\(\displaystyle \int -x sin(x)=xcosx-sinx +C\) but the answer key gives \(\displaystyle y=cx-xcosx\)
\(\displaystyle x\frac{dy}{dx}-y=x^2sinx\)
rewrite \(\displaystyle \frac{dy}{dx}-\frac{y}{x}=\frac{x^2sinx}{x}=xsinx\)
\(\displaystyle P(x)=\frac{-1}{x}\)
So \(\displaystyle e^ { \int \frac{-1}{x} dx }=-1\)<=this is where I went wrong
\(\displaystyle \frac{d}{dx}[-y]=-xsinx\)
\(\displaystyle \int -x sin(x)=xcosx-sinx +C\) but the answer key gives \(\displaystyle y=cx-xcosx\)
Last edited: