- #1
"Don't panic!"
- 601
- 8
Hi,
I'm having a bit of difficulty with the following definition of a linear mapping between two vector spaces:
Suppose we have two [itex]n[/itex]-dimensional vector spaces [itex]V[/itex] and [itex]W[/itex] and a set of linearly independent vectors [itex]\mathcal{S} = \lbrace \mathbf{v}_{i}\rbrace_{i=1, \ldots , n}[/itex] which forms a basis for [itex]V[/itex]. We define the linear operator [itex]T[/itex] which maps the basis vectors [itex]\mathbf{v}_{j}[/itex] to their representations in [itex] W[/itex], i.e. [itex]T:V \rightarrow W[/itex], as [tex] T\left(\mathbf{v}_{j}\right)= \sum_{i=1}^{n} T_{ij}\mathbf{w}_{i} [/tex] where [itex]\mathcal{B}= \lbrace\mathbf{w}_{i} \rbrace_{i=1, \ldots , n}[/itex] is a basis for [itex]W[/itex].
What I'm struggling with is, why is the transformation expressed as [itex]\sum_{i=1}^{n} T_{ij}\mathbf{w}_{i}[/itex] and not [itex]\sum_{j=1}^{n} T_{ij}\mathbf{w}_{j}[/itex] ? Is it purely definition, or is there some deeper meaning behind it? (and if so, is there any way of deriving this expression?).
Sorry to ask a probably very trivial question, but it's been bugging me, and I can't seem to find a satisfactory answer from trawling the internet.
I'm having a bit of difficulty with the following definition of a linear mapping between two vector spaces:
Suppose we have two [itex]n[/itex]-dimensional vector spaces [itex]V[/itex] and [itex]W[/itex] and a set of linearly independent vectors [itex]\mathcal{S} = \lbrace \mathbf{v}_{i}\rbrace_{i=1, \ldots , n}[/itex] which forms a basis for [itex]V[/itex]. We define the linear operator [itex]T[/itex] which maps the basis vectors [itex]\mathbf{v}_{j}[/itex] to their representations in [itex] W[/itex], i.e. [itex]T:V \rightarrow W[/itex], as [tex] T\left(\mathbf{v}_{j}\right)= \sum_{i=1}^{n} T_{ij}\mathbf{w}_{i} [/tex] where [itex]\mathcal{B}= \lbrace\mathbf{w}_{i} \rbrace_{i=1, \ldots , n}[/itex] is a basis for [itex]W[/itex].
What I'm struggling with is, why is the transformation expressed as [itex]\sum_{i=1}^{n} T_{ij}\mathbf{w}_{i}[/itex] and not [itex]\sum_{j=1}^{n} T_{ij}\mathbf{w}_{j}[/itex] ? Is it purely definition, or is there some deeper meaning behind it? (and if so, is there any way of deriving this expression?).
Sorry to ask a probably very trivial question, but it's been bugging me, and I can't seem to find a satisfactory answer from trawling the internet.