- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the following exercise but I think that I miss something.
The statement is the following:
We are given the following system of equations: \begin{align*}2a-2c+d-2e=&-2 \\ -2c-2d+2e=&\ \ \ \ \ 3 \\ d+2e=&-2\end{align*}
1) Is the system in echelon form? Justify.
2) Solve the linear system of equations over $\mathbb{R}$.
3) How many solutions has the system?
The system in matrix form is: \begin{equation*}\begin{pmatrix}\left.\begin{matrix}2 & -2 & 1 & -2 \\ 0 & -2 & -2 & 2 \\ 0 & 0 & 1 & 2\end{matrix}\right|\begin{matrix}-2 \\ 3\\ -2\end{matrix}\end{pmatrix}\end{equation*}
So the system is in echelon form, or not?
Isn't it trivial? Or do I miss something?
Does maybe the fact that the variable $b$ is missing important here?
:unsure:
I am looking at the following exercise but I think that I miss something.
The statement is the following:
We are given the following system of equations: \begin{align*}2a-2c+d-2e=&-2 \\ -2c-2d+2e=&\ \ \ \ \ 3 \\ d+2e=&-2\end{align*}
1) Is the system in echelon form? Justify.
2) Solve the linear system of equations over $\mathbb{R}$.
3) How many solutions has the system?
The system in matrix form is: \begin{equation*}\begin{pmatrix}\left.\begin{matrix}2 & -2 & 1 & -2 \\ 0 & -2 & -2 & 2 \\ 0 & 0 & 1 & 2\end{matrix}\right|\begin{matrix}-2 \\ 3\\ -2\end{matrix}\end{pmatrix}\end{equation*}
So the system is in echelon form, or not?
Isn't it trivial? Or do I miss something?
Does maybe the fact that the variable $b$ is missing important here?
:unsure: