- #1
Guest2
- 193
- 0
1. Show that the map $\mathcal{A}$ from $\mathbb{R}^3$ to $\mathbb{R}^3$ defined by $\mathcal{A}(x,y,z) = (x+y, x-y, z)$ is a linear transformation. Find its matrix in standard basis.
2. Find the dimensions of $\text{Im}(\mathcal{A})$ and $\text{Ker}(\mathcal{A})$, and find their basis for the linear transformation $\mathcal{A}$ on $\mathbb{R}^3$ defined by $\mathcal{A} (x,y,z) = (x-2z, y+z, 0)$.
1. If let $u = (x,y,z)$, and $v = (x', y', z')$. Then
$\mathcal{A}(u+v) = (x+y+x'+y', x-y+x'-y', z+z')= (x+y, x-y, z)+(x'+y', x'-y', z') = \mathcal{A}(u)+\mathcal{A}(v).$
Moreover, $ \mathcal{A}(\lambda u) = (\lambda x +\lambda y, \lambda x- \lambda y, \lambda z) = \lambda (x+y, x-y, z) = \lambda \mathcal{A}(u)$
Hence $\mathcal{A}$ is a linear transformation. However, I can't find its matrix.
2. Find the dimensions of $\text{Im}(\mathcal{A})$ and $\text{Ker}(\mathcal{A})$, and find their basis for the linear transformation $\mathcal{A}$ on $\mathbb{R}^3$ defined by $\mathcal{A} (x,y,z) = (x-2z, y+z, 0)$.
1. If let $u = (x,y,z)$, and $v = (x', y', z')$. Then
$\mathcal{A}(u+v) = (x+y+x'+y', x-y+x'-y', z+z')= (x+y, x-y, z)+(x'+y', x'-y', z') = \mathcal{A}(u)+\mathcal{A}(v).$
Moreover, $ \mathcal{A}(\lambda u) = (\lambda x +\lambda y, \lambda x- \lambda y, \lambda z) = \lambda (x+y, x-y, z) = \lambda \mathcal{A}(u)$
Hence $\mathcal{A}$ is a linear transformation. However, I can't find its matrix.
Last edited: