- #1
Sudharaka
Gold Member
MHB
- 1,568
- 1
Hi everyone, :)
Here's a question and I'll also write down the answer for which I got zero marks. :p I would really appreciate if you can find where I went wrong.
Question: Let \(\phi,\,\psi\in V^{*}\) be two linear functions on a vector space \(V\) such that \(\phi(x)\,\psi(x)=0\) for all \(x\in V\). Prove that either \(\phi=0\mbox{ or }\psi=0\).
Note: \(V^{*}\) is the dual space of \(V\).
My Answer: Note that both \(\phi(x)\) and \(\psi(x)\) are elements of a field (the underlying field of the vector space \(F\)). Since every field is an integral domain it has no zero divisors. Hence, \(\phi(x)\,\psi(x)=0\Rightarrow \phi=0\mbox{ or }\psi=0\).
Here's a question and I'll also write down the answer for which I got zero marks. :p I would really appreciate if you can find where I went wrong.
Question: Let \(\phi,\,\psi\in V^{*}\) be two linear functions on a vector space \(V\) such that \(\phi(x)\,\psi(x)=0\) for all \(x\in V\). Prove that either \(\phi=0\mbox{ or }\psi=0\).
Note: \(V^{*}\) is the dual space of \(V\).
My Answer: Note that both \(\phi(x)\) and \(\psi(x)\) are elements of a field (the underlying field of the vector space \(F\)). Since every field is an integral domain it has no zero divisors. Hence, \(\phi(x)\,\psi(x)=0\Rightarrow \phi=0\mbox{ or }\psi=0\).