- #1
chartery
- 40
- 4
Carroll linearising by perturbation ##g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}## has: (Notes 6.4, Book 7.4)
##\Gamma^{\rho}_{\mu\nu}=\frac{1}{2}g^{\rho\lambda}\left( {\partial_{ \mu}}g_{\nu\lambda}+{\partial_{ \nu}}g_{\lambda\mu}-{\partial_{ \lambda}}g_{\mu\nu}\right)=\frac{1}{2}\eta^{\rho\lambda}\left( {\partial_{ \mu}}h_{\nu\lambda}+{\partial_{ \nu}}h_{\lambda\mu}-{\partial_{ \lambda}}h_{\mu\nu}\right)##
This must mean that ##{\partial_{ \mu}}h_{\nu\lambda}## is taken to be of same order as ##h^{\rho\lambda}##
I can't find a justification anywhere, so I guess everyone thinks it self-evident.
Is it certain that a weak gravitational field cannot vary quickly or 'strongly' ?
##\Gamma^{\rho}_{\mu\nu}=\frac{1}{2}g^{\rho\lambda}\left( {\partial_{ \mu}}g_{\nu\lambda}+{\partial_{ \nu}}g_{\lambda\mu}-{\partial_{ \lambda}}g_{\mu\nu}\right)=\frac{1}{2}\eta^{\rho\lambda}\left( {\partial_{ \mu}}h_{\nu\lambda}+{\partial_{ \nu}}h_{\lambda\mu}-{\partial_{ \lambda}}h_{\mu\nu}\right)##
This must mean that ##{\partial_{ \mu}}h_{\nu\lambda}## is taken to be of same order as ##h^{\rho\lambda}##
I can't find a justification anywhere, so I guess everyone thinks it self-evident.
Is it certain that a weak gravitational field cannot vary quickly or 'strongly' ?