- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $C[0,1]$ and $C^1[0,1]$ be the space of continuous and continuously differentiable (respectively) functions $x:[0,1]\rightarrow \mathbb{R}$ with the supremum norm $\displaystyle{\|x\|=\sup_{t\in [0,1]}|x(t)|}$ and $T_0, T_1, T_2: C^1[0,1]\rightarrow C[0,1]$ maps with \begin{equation*}T_0(x)(t)=x'(t), \ \ T_1(x)(t)=\int_0^tsx(s)\, ds \ \ \text{ und } \ \ T_2(x)(t)=\int_0^tsx^2(s)\, ds\end{equation*}
Let $C[0,1]$ and $C^1[0,1]$ be the space of continuous and continuously differentiable (respectively) functions $x:[0,1]\rightarrow \mathbb{R}$ with the supremum norm $\displaystyle{\|x\|=\sup_{t\in [0,1]}|x(t)|}$ and $T_0, T_1, T_2: C^1[0,1]\rightarrow C[0,1]$ maps with \begin{equation*}T_0(x)(t)=x'(t), \ \ T_1(x)(t)=\int_0^tsx(s)\, ds \ \ \text{ und } \ \ T_2(x)(t)=\int_0^tsx^2(s)\, ds\end{equation*}
- Check the linearity and the continuity of $T_0, T_1, T_2$.
- Calculate the norm $\displaystyle{\|T_1\|:=\sup_{\|x\|\leq 1}\|T_1(x)\|}$.
- Let $x,y:[0,1]\rightarrow \mathbb{R}$ and $a\in \mathbb{R}$.
- \begin{align*}&T_0(x+y)(t)=(x+y)'(t)=x'(t)+y'(t)=T_0(x)(t)+T_0(y)(t)\\ &T_0(ax)(t)=(ax)'(t)=ax'(t)=aT_0(x)(t) \end{align*}
So $T_0$ is linear. - \begin{align*}&T_1(x+y)(t)=\int_0^1s(x+y)(s)\, ds=\int_0^1s(x(s)+y(s))\, ds=\int_0^1sx(s)\, ds+\int_0^1sy(s)\, ds=T_1(x)(t)+T_1(y)(t)\\ &T_1(ax)(t)=\int_0^ts(ax)(s)\, ds=\int_0^tasx(s)\, ds=a\int_0^tsx(s)\, ds=aT_1(x)(t) \end{align*}
So $T_1$ is linear. - \begin{align*}T_2(x+y)(t)&=\int_0^1s(x+y)^2(s)\, ds=\int_0^1s[x^2(s)+2x(s)y(s)+y^2(s)]\, ds \\ & =\int_0^1sx^2(s)\, ds+2\int_0^1sx(s)y(s)\, ds+\int_0^1sy^2(s)\, ds \\ & =T_2(x)(t)+2\int_0^1sx(s)y(s)\, ds+T_2(y)(t)\neq T_2(x)(t)+T_2(y)(t)\end{align*}
So $T_2$ is not linear.
Is everything correct? (Wondering)
How can we check the continuity? (Wondering) - \begin{align*}&T_0(x+y)(t)=(x+y)'(t)=x'(t)+y'(t)=T_0(x)(t)+T_0(y)(t)\\ &T_0(ax)(t)=(ax)'(t)=ax'(t)=aT_0(x)(t) \end{align*}
- \begin{align*}&\\ & \|T_1(x)\|=\left \|\int_0^tsx(s)\, ds\right \|\leq \int_0^t\|sx(s)\|\, ds=\int_0^t|s|\|x(s)\|\, ds=\int_0^ts\|x(s)\|\, ds \\ &\Rightarrow \sup_{\|x\|\leq 1}\|T_1(x)\|\leq \sup_{\|x\|\leq 1}\int_0^ts\|x(s)\|\, ds=\int_0^ts\, ds=\left [\frac{s^2}{2}\right ]_0^t=\frac{t^2}{2}\end{align*}
Is this correct? Or do we have to find an equality and not an inequality? (Wondering)