- #1
yakattack
- 5
- 0
Homework Statement
If [tex]\varphi[/tex] and [tex]\widetilde{ \varphi }[/tex] are linearly independent and
[tex]\hat{N}[/tex][tex]\varphi[/tex]=n[tex]\varphi[/tex] and
[tex]\hat{N}[/tex][tex]\widetilde{\varphi}[/tex]=n[tex]\widetilde{\varphi}[/tex], with [tex]n\geq 1[/tex]
[tex]\ \text{Prove that } \hat{a}\varphi_{n} \text{ and } \hat{a}\widetilde{\varphi}_{n} \text{ are also linearly independent.}[/tex]
Homework Equations
[tex]\ \text{I have to use the fact that if } \hat{N}\varphi=\nu\varphi \text{ then } \nu\geq0 \text{ and } \nu=0 \text { iff } \hat{a}\varphi=0
\hat{N}=\hat{a^{*}}\hat{a}
\hat{a} \text { is the annihilation operator.}[/tex]
The Attempt at a Solution
If i suppose they aren't linearly independent then i can show that this means that
[tex]\hat{a}[/tex][tex]\varphi[/tex][tex]_{n}[/tex] and the same with tildas are linearly dependent. But does this show that the converse is true?