- #1
Dethrone
- 717
- 0
Let ${}\left\{X, Y, Z, W\right\}$ be an independent set in $\Bbb{R}^n$, is the following set independent?
${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$
My textbook says it isn't, but I'm not sure why. Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ be scalars, then $\lambda_1(X+Y)+\lambda_2(Y+Z)+\lambda_3(Z+W)+\lambda_4(W+X)=0$. Expanding an simplifying, we get $(\lambda_1+\lambda_4)X+(\lambda_1+\lambda_2)Y+(\lambda_2+\lambda_3)Z+(\lambda_3+\lambda_4)W=0$.
Since we are given that ${}\left\{X, Y, Z, W\right\}$ is independent, then $(\lambda_1+\lambda_4)=0$, $(\lambda_1+\lambda_2)=0$, $(\lambda_2+\lambda_3)=0$, and $(\lambda_3+\lambda_4)=0$. This implies that $\lambda_1=\lambda_3=-\lambda_2=-\lambda_4=0$. Why is it not independent, then?
${}\left\{X+Y, Y+Z, Z+W, W+X\right\}$
My textbook says it isn't, but I'm not sure why. Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ be scalars, then $\lambda_1(X+Y)+\lambda_2(Y+Z)+\lambda_3(Z+W)+\lambda_4(W+X)=0$. Expanding an simplifying, we get $(\lambda_1+\lambda_4)X+(\lambda_1+\lambda_2)Y+(\lambda_2+\lambda_3)Z+(\lambda_3+\lambda_4)W=0$.
Since we are given that ${}\left\{X, Y, Z, W\right\}$ is independent, then $(\lambda_1+\lambda_4)=0$, $(\lambda_1+\lambda_2)=0$, $(\lambda_2+\lambda_3)=0$, and $(\lambda_3+\lambda_4)=0$. This implies that $\lambda_1=\lambda_3=-\lambda_2=-\lambda_4=0$. Why is it not independent, then?