- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Let ##f## be a measurable function supported on some ball ##B = B(x,\rho)\subset \mathbb{R}^n##. Show that if ##f \cdot \log(2 + |f|) ## is integrable over ##B##, then the same is true for the Hardy-Littlewood maximal function ##Mf : y \mapsto \sup_{0 < r < \infty}|B(y,r)|^{-1} \int_{B(y,r)} |f(z)|\, dz##.
Last edited: