- #1
Pencilvester
- 199
- 46
Hey PF, I am working on a problem set, and one of the problems is proving that the Christoffel symbols vanish at the origin of the coordinates ##y^{\alpha}## given by the coordinate transformation: $$y^\alpha (x) = x^\alpha - x^\alpha_{(0)} + \frac {1} {2} (x^\mu - x^\mu_{(0)} )(x^\nu - x^\nu_{(0)} ) \Gamma^\alpha_{(0) \mu \nu}$$ Where anything with a ##(0)## subscript is evaluated at some particular point.
Figuring out that ##\frac {\partial y^{\alpha}} {\partial x^{\mu}} = \delta^{\alpha}_{\mu} + (x^{\lambda} - x^{\lambda}_{(0)}) \Gamma^{\alpha}_{(0) \mu \lambda}## and that ##\frac {\partial^2 y^{\alpha}} {\partial x^\mu \partial x^\nu} = \Gamma^{\alpha}_{(0) \mu \nu}## was fairly straightforward, and I also know the transformation law for the Christoffel symbols, but I can't figure out how to find the inverse of the Jacobian—the ##\frac {\partial x^\alpha} {\partial y^\mu}##’s. Here’s part of the solution (they use squiggles instead of ##y##):
They’re clearly using a Taylor polynomial, but I don’t understand how to find that the unknown matrix ##A^\alpha_{\mu \beta}## ends up being ##\Gamma^\alpha_{\mu \beta}##. I feel like I must be missing something super obvious. Would someone be so kind as to point out what I’m missing?
Figuring out that ##\frac {\partial y^{\alpha}} {\partial x^{\mu}} = \delta^{\alpha}_{\mu} + (x^{\lambda} - x^{\lambda}_{(0)}) \Gamma^{\alpha}_{(0) \mu \lambda}## and that ##\frac {\partial^2 y^{\alpha}} {\partial x^\mu \partial x^\nu} = \Gamma^{\alpha}_{(0) \mu \nu}## was fairly straightforward, and I also know the transformation law for the Christoffel symbols, but I can't figure out how to find the inverse of the Jacobian—the ##\frac {\partial x^\alpha} {\partial y^\mu}##’s. Here’s part of the solution (they use squiggles instead of ##y##):
They’re clearly using a Taylor polynomial, but I don’t understand how to find that the unknown matrix ##A^\alpha_{\mu \beta}## ends up being ##\Gamma^\alpha_{\mu \beta}##. I feel like I must be missing something super obvious. Would someone be so kind as to point out what I’m missing?