- #1
juantheron
- 247
- 1
Find locus of mid point of line segment intercept between real and imaginary axis by the line
$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex
number such that $\Re(a),\Im(a)\neq 0$
My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$
We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$
So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$
So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$
Now How can i solve it after that, Help me, Thanks
$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex
number such that $\Re(a),\Im(a)\neq 0$
My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$
We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$
So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$
So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$
Now How can i solve it after that, Help me, Thanks