- #1
muppet
- 608
- 1
Hi all,
I have functions [itex]\eta(\mu),Z(\mu)[/itex] related by
[tex]\eta(\mu)=-\frac{d \ln{Z}}{d \ln{\mu}}[/tex]
I'm told that if we specify [itex]\eta[/itex] then we have
[tex]Z^{-1}(\mu)=Z^{-1}(\mu_0)\exp(\int^{\mu}_{\mu_0} dk \ \eta(k))[/tex]
but upon inverting this equation, taking the log and differentiating wrt [itex]\ln(\mu)[/itex] I get
[tex]-\frac{d \ln{Z}}{d \ln{\mu}}=-\mu \frac{d }{d \mu}(-\int^{\mu}_{\mu_0} dk \ \eta(k))=\mu \eta(\mu)[/tex]
What am I doing wrong?
Thanks in advance.
I have functions [itex]\eta(\mu),Z(\mu)[/itex] related by
[tex]\eta(\mu)=-\frac{d \ln{Z}}{d \ln{\mu}}[/tex]
I'm told that if we specify [itex]\eta[/itex] then we have
[tex]Z^{-1}(\mu)=Z^{-1}(\mu_0)\exp(\int^{\mu}_{\mu_0} dk \ \eta(k))[/tex]
but upon inverting this equation, taking the log and differentiating wrt [itex]\ln(\mu)[/itex] I get
[tex]-\frac{d \ln{Z}}{d \ln{\mu}}=-\mu \frac{d }{d \mu}(-\int^{\mu}_{\mu_0} dk \ \eta(k))=\mu \eta(\mu)[/tex]
What am I doing wrong?
Thanks in advance.