- #1
VeraMason
- 1
- 0
- Homework Statement
- Prove that the following sentences are theorems (Truths of Logic):
A iff ~~A *Do not use Double Negation*
- Relevant Equations
- NA
My thought was to break up the sentence into its equivalent form: (A ->~~A) & (~~A -> A)
From there I assumed the premise of both sides to use indirect proofs, so:
1. ~(A -> ~~A) AP
2. ~(~A or ~~A) 1 Implication
3. ~~A & ~~~A 2 DeMorgan's
4. A -> ~~A 1-3 Indirect Proof
5. ~(~~A -> A) AP
6. ~(~~~A or A) 5 Implication
7. ~~~~A & ~A 6 DeMorgan's
8. ~~A -> A 5-7 Indirect Proof
9. (A ->~~A) & (~~A -> A) 4,8 Conjunction
10. A iff ~~A 9 EquivalenceTo me, this looks like it would be correct. Obviously, lines 3 and 7 would look a lot cleaner if I was allowed to use double negation, but in my mind, it shouldn't matter since both lines are a contradiction that essentially says: A & ~A.
Is this correct?
From there I assumed the premise of both sides to use indirect proofs, so:
1. ~(A -> ~~A) AP
2. ~(~A or ~~A) 1 Implication
3. ~~A & ~~~A 2 DeMorgan's
4. A -> ~~A 1-3 Indirect Proof
5. ~(~~A -> A) AP
6. ~(~~~A or A) 5 Implication
7. ~~~~A & ~A 6 DeMorgan's
8. ~~A -> A 5-7 Indirect Proof
9. (A ->~~A) & (~~A -> A) 4,8 Conjunction
10. A iff ~~A 9 EquivalenceTo me, this looks like it would be correct. Obviously, lines 3 and 7 would look a lot cleaner if I was allowed to use double negation, but in my mind, it shouldn't matter since both lines are a contradiction that essentially says: A & ~A.
Is this correct?