Longest photon wavelength observed?

In summary: No. As I have already posted ELF (Extra Low Frequency) signals were used for transmission. I believe I remember frequencies used were in the range of 50 Hz (sorry, I can be wrong), which gives wavelength of 6000 km.
  • #1
Loren Booda
3,125
4
What has been the longest photon wavelength actually observed?
 
Physics news on Phys.org
  • #2
If you mean in its classical manifestation of EM wavelength, it can be pretty long I guess (km ?).
 
  • #3
150 kHz is routinely used for radio communication (Deutschlandfunk in Donebach). That gives 2 km for commercial applications. ELF used for communications with submarines is in the tens of hertz range, so we are talking tens of thousands km - practical use once again.
 
Last edited:
  • #4
Loren Booda said:
What has been the longest photon wavelength actually observed?

How far across is the Earth? I get 16 Hz from one side to the other, following the curvature of the surface.

Any signal at about 16 Hz or less transmitted in Singapore and picked-up in Indiana could be called Coulombic or magnetic coupling--rather than a transmitted photon.

To sufficiently answer your question, we should know if any of the radio telescopes receive signals at under 16 Hz.

Maybe I'm way off track. I don't know anything about the usual frequency bands of stuff.
 
  • #5
Phrak is on the right track, according to pg 7 of Jackson 3rd edition which contains a discussion on the experimental lower bound for the mass of the photon and refers to Schuman resonances in the earth-ionosphere cavity that have frequencies as low as 8 Hz.
 
  • #6
Crosson said:
Phrak is on the right track, according to pg 7 of Jackson 3rd edition which contains a discussion on the experimental lower bound for the mass of the photon and refers to Schuman resonances in the earth-ionosphere cavity that have frequencies as low as 8 Hz.
But does it say anything about what has actually been observed or detected.
 
  • #7
RandallB said:
But does it say anything about what has actually been observed or detected.

Yes, from the context of the discussion on that page it is clear that Jackson is citing the 8 Hz Shumann resonances as the lowest frequency electromagnetic waves that have been detected to date.
 
  • #8
A lot of intesting points here.

Apparently longwave radio telescopes receive in the 150 - 280 KHz range that Borek was talking about. About one thousand miles.

Crosson. The Shumann resonances are new to me. And it begs the question, what other planetary bodies, the sun or stars radiate at a characteristic frequency about equal to their diameter? And if they radiate, how would you detect it?

But my point was that it's not conclusive to talk about receiving a photon that from a source that is less than a few wavelengths distant, so that the Shumann resonances would not be conculsive as far as the detection of propagating waves.
 
Last edited:
  • #9
Anyway, we shouldn't mix the concept of photon with that of EM waves; having been able to detect very lof frequency EM waves, doesn't imply that we have experimentally proved the existence of photons of such frequency.
 
  • #10
lightarrow said:
Anyway, we shouldn't mix the concept of photon with that of EM waves; having been able to detect very lof frequency EM waves, doesn't imply that we have experimentally proved the existence of photons of such frequency.

Why not?
 
  • #11
Phrak said:
Why not?
Because to say to have detected photons you have to show photoelectric effect, Compton effect, photon antibunching, ecc., not simply a resonance in your electronic circuit.
 
  • #12
So the LONGEST so far is about 150 Khz (about 2 km).
 
  • #13
lightarrow said:
Because to say to have detected photons you have to show photoelectric effect, Compton effect, photon antibunching, ecc., not simply a resonance in your electronic circuit.


Ok, so we should make a superconducting LC circuit with some resonance frequency omega, which has energy levels (n+1/2) hbar omega. You can connect an antenna to it and let it absorb one quantum of the electromagnetic field of frequency omega.

For this to work, the temperature of the circuit must be low enough:

[tex]T\lesssim \frac{\hbar\omega}{k_{\text{b}}}[/tex]

Or we can say that:

[tex]\omega\gtrsim \frac{k_{\text{b}}T}{\hbar}[/tex]

For T = 10^(-10)K, you find that the frequency is 2 Hz.

So, it would be a Tour de Force to detect single photons of a few hertz.
 
  • #14
lightarrow said:
Because to say to have detected photons you have to show photoelectric effect, Compton effect, photon antibunching, ecc., not simply a resonance in your electronic circuit.

Fair enough, lightarrow. Everyone seems to have their own criterion.
 
  • #15
RandallB said:
So the LONGEST so far is about 150 Khz (about 2 km).

No. As I have already posted ELF (Extra Low Frequency) signals were used for transmission. I believe I remember frequencies used were in the range of 50 Hz (sorry, I can be wrong), which gives wavelength of 6000 km.
 
  • #16
Count Iblis said:
Ok, so we should make a superconducting LC circuit with some resonance frequency omega, which has energy levels (n+1/2) hbar omega. You can connect an antenna to it and let it absorb one quantum of the electromagnetic field of frequency omega.
Ok, but AFAIK, also a semi-classical theory (EM wave treated classically - material treated quantistically) could explain the effect, so that effect wouldn't be a conclusive prove that EM radiation of those frequencies is made of photons.
 

FAQ: Longest photon wavelength observed?

What is the longest photon wavelength observed?

The longest photon wavelength observed is approximately 1.2 millimeters, which corresponds to a frequency of about 250 gigahertz.

How was the longest photon wavelength observed measured?

The longest photon wavelength observed was measured using radio telescopes, which are able to detect low energy electromagnetic radiation such as radio waves.

What type of objects emit the longest photon wavelengths?

The longest photon wavelengths are emitted by objects with very low temperatures, such as gas clouds in interstellar space or the cosmic microwave background radiation.

Can the longest photon wavelength observed be seen with the naked eye?

No, the longest photon wavelength observed falls within the radio wave spectrum, which is not visible to the human eye.

Why is it important to study the longest photon wavelength observed?

Studying the longest photon wavelength observed can provide valuable insights into the properties of distant objects and the origins of the universe, as well as helping to improve our understanding of electromagnetic radiation and its behavior in different environments.

Back
Top