- #1
CAF123
Gold Member
- 2,948
- 88
DIS observables can be expressed in terms of structure functions F1, F2 and FL. There exists the relation ##F_L = F_2 - 2xF_1##.
We can write $$ F_L = \sum_a x \int_x^1 \frac{dy}{y} C_{a,L}(y,Q) f_a (\frac{x}{y},Q) $$ and similarly for ##F_1## and ##F_2##:
$$ F_1 = \sum_a x \int_x^1 \frac{dy}{y} C_{a,1}(y,Q) f_a (\frac{x}{y},Q) $$
$$ F_2 = \sum_a x \int_x^1 \frac{dy}{y} C_{a,2}(y,Q) f_a (\frac{x}{y},Q) $$
Then ##F_L = F_2 - 2xF_1## means that also
$$F_L = \sum_a x \int_x^1 \frac{dy}{y} \left( C_{a,2}(y,Q) - 2x C_{a,1}(y,Q) \right) f_a (\frac{x}{y},Q). $$
Comparing this with above eqn for ##F_L## means that ##C_{a,L}## is not just a function of y and Q. Is it possible to extract the longitudinal coefficient function for ##F_L## from knowledge of the coefficient function for ##F_1## and ##F_2##?
We can write $$ F_L = \sum_a x \int_x^1 \frac{dy}{y} C_{a,L}(y,Q) f_a (\frac{x}{y},Q) $$ and similarly for ##F_1## and ##F_2##:
$$ F_1 = \sum_a x \int_x^1 \frac{dy}{y} C_{a,1}(y,Q) f_a (\frac{x}{y},Q) $$
$$ F_2 = \sum_a x \int_x^1 \frac{dy}{y} C_{a,2}(y,Q) f_a (\frac{x}{y},Q) $$
Then ##F_L = F_2 - 2xF_1## means that also
$$F_L = \sum_a x \int_x^1 \frac{dy}{y} \left( C_{a,2}(y,Q) - 2x C_{a,1}(y,Q) \right) f_a (\frac{x}{y},Q). $$
Comparing this with above eqn for ##F_L## means that ##C_{a,L}## is not just a function of y and Q. Is it possible to extract the longitudinal coefficient function for ##F_L## from knowledge of the coefficient function for ##F_1## and ##F_2##?