- #1
member 731016
- Homework Statement
- Please see below
- Relevant Equations
- Please see below
For this problem,
The solution is,
Does someone please know why ##N > 0##. I though at the min speed to still go around the loop, we could set ##N = 0## and ##mg## provides the centripetal force.
Also, I am wondering how to do this problem with using energy conservation.
My working is
## N + mg = \frac{mv^2}{R}##
##mgy_1 = mgy_2 + \frac{1}{2}mv^2##
##mgy_1 = 2mgR + \frac{R(N + mg)}{2}##
##y_1 = 2R + \frac{R(N + mg)}{2mg}##
##y_1 = R(\frac{N}{2mg} + \frac{5}{2})##
However, I am not to sure how to go from here. If I assume that ##N = 0## I get ##y_1 = \frac{5R}{2}## so any height greater than or equal to ##y_1## the object should loop the loop?
Many thanks!
The solution is,
Does someone please know why ##N > 0##. I though at the min speed to still go around the loop, we could set ##N = 0## and ##mg## provides the centripetal force.
Also, I am wondering how to do this problem with using energy conservation.
My working is
## N + mg = \frac{mv^2}{R}##
##mgy_1 = mgy_2 + \frac{1}{2}mv^2##
##mgy_1 = 2mgR + \frac{R(N + mg)}{2}##
##y_1 = 2R + \frac{R(N + mg)}{2mg}##
##y_1 = R(\frac{N}{2mg} + \frac{5}{2})##
However, I am not to sure how to go from here. If I assume that ##N = 0## I get ##y_1 = \frac{5R}{2}## so any height greater than or equal to ##y_1## the object should loop the loop?
Many thanks!
Last edited by a moderator: