- #1
ergospherical
- 1,055
- 1,347
If ##\partial_{\alpha} J^{\alpha}(x) = 0## then ##Q \equiv \displaystyle{\int} d^3 x J^t(x)## is time-invariant. To show that if ##J^{\alpha}(x)## is a four-vector then ##Q## is also Lorentz-invariant, he re-writes it as \begin{align*}
Q = \int d^4 x J^{\alpha}(x) \partial_{\alpha} H(n_{\beta} x^{\beta})
\end{align*}where ##n_{\alpha} = (1,0,0,0)## and ##H(x)## is the unit step function. I think this makes sense because ##n_{\beta} x^{\beta} = t## and \begin{align*}
Q = \int d^4 x J^{\alpha}(x) \partial_{\alpha} H(t) &= \int d^4 x J^t(x) \partial_t H(t) \\
&= \int d^4 x J^t(x) \delta(t) \\
&= \int d^3 x J^t(x)
\end{align*}The next part is to find ##Q'## under a Lorentz transformation, which he claims is done by changing ##n_{\beta} \rightarrow n'_{\beta} = {{\Lambda}^{\gamma}}_{\beta} n_{\gamma}##. That is, ##Q' - Q = \displaystyle{\int} d^4 x \left[ J^{\alpha}(x)\{H(n_{\beta}' x^{\beta}) - H(n_{\beta} x^{\beta}) \}\right]##. What is the justification for this step - why, for example, is ##n_{\beta}## the only quantity that needs to be transformed in the integrand, and not ##x## or ##J(x)##?
Q = \int d^4 x J^{\alpha}(x) \partial_{\alpha} H(n_{\beta} x^{\beta})
\end{align*}where ##n_{\alpha} = (1,0,0,0)## and ##H(x)## is the unit step function. I think this makes sense because ##n_{\beta} x^{\beta} = t## and \begin{align*}
Q = \int d^4 x J^{\alpha}(x) \partial_{\alpha} H(t) &= \int d^4 x J^t(x) \partial_t H(t) \\
&= \int d^4 x J^t(x) \delta(t) \\
&= \int d^3 x J^t(x)
\end{align*}The next part is to find ##Q'## under a Lorentz transformation, which he claims is done by changing ##n_{\beta} \rightarrow n'_{\beta} = {{\Lambda}^{\gamma}}_{\beta} n_{\gamma}##. That is, ##Q' - Q = \displaystyle{\int} d^4 x \left[ J^{\alpha}(x)\{H(n_{\beta}' x^{\beta}) - H(n_{\beta} x^{\beta}) \}\right]##. What is the justification for this step - why, for example, is ##n_{\beta}## the only quantity that needs to be transformed in the integrand, and not ##x## or ##J(x)##?